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Overview
Overcoming a computational bottleneck
Problem Mapping
Communication operations

Row broadcast
Column broadcast
Pivot identification
Pivot row exchange

Linear algebra kernels (single node)
Matrix multiplication
Triangular solve, multiple RHS
Scaling, rank-1 updates (code fusion)



LU Factorization: Brief Review
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LINPACK
Physical to Logical Mapping
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Problem Mapping
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Panel Factorization: Option #1 
Exploit Load Imbalance

Distributed over relatively few processors
Especially in the 64K node case

May take as long as several DGEMM updates
Value may change as libraries change

DGEMM load imbalance
Block size trades balance for speed

Want to use collective communication 
primitives if possible

May require no “holes” in communication fabric 
(to achieve near-optimal performance)



Speed-up Option #2: 
Reduce Load Imbalance

Change the data distribution
Decrease the critical path length

Speed up panel factorization

Take advantage of communication abilities of 
machine

Complements Option #1 
Memory size (small favors #2; large #1)

Memory hierarchy (high latency: #1)

The two options can be used in concert



Communication Routines

Broadcasts precede DGEMM update
Routine needs to be architecturally aware

Multiple “pipes” connect processors

Physical to logical mapping must be carefully 
managed
Careful orchestration is required to take 
advantage of machines considerable abilities
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Row Broadcast
Mesh

Recv 2
Send 4
Hot Spot!
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Broadcast
Bandwidth/Latency

Bandwidth: 2 bytes/cycle per wire
Latency: 

Sqrt(p), pipelined (large msg.)
Deposit bit: 3 hops

Mesh
Recv 2/Send 3

Torus
Recv 4/Send 4 (no “hot spot”)
Recv 2/Send 2 (red-blue only … again, no bottleneck)

Pipe
Recv/Send: 1/1 on mesh; 2/2 on torus



Conclusion
Avoiding Bottlenecks

Overlapping differing computations
Beneficial on large or “memory walled” machines

Duplicating computations (local state)
Combine with moving from critical path 

Or make “critical” less so

Take advantage of hardware’s abilities
Algorithms & Architectures approach

“Mom & apple pie” (fundamental triangle; K-4)
Difference between good and optimal

Many characteristics are dynamic, but there is often a “safe”
(fallback) method/approach/parameter



Conclusion

Make use of models, extrapolated data
Use models to the extent that the architecture and 
algorithm are understood
Extrapolate from small processor sets
Vary as many (yes) parameters as possible at the 
same time

Consider how they interact and how they don’t
Also remember that instruments affect timing

Often can compensate (incorrect answer results)

Utilize observed “eccentricities” with caution 
(MPI_Reduce)



Conclusion

Data Structures & Communications
Global: Altered distribution

Use as much hardware as possible
Have a path for software maturing process

Local: Recursive Data Formats (2nd talk)
Take advantage of local processor features
Large flops/memory ratio leads to an enter, re-
map, execute, undo, exit pattern

Code fusion (2nd talk)



Conclusion II
1.4 TF Linpack on BG/L Prototype: 
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Thanks to …
Gheorghe Almasi & Phil Heidelberger: 
MPI/Communications
Vernon Austel: Data copy routines
Gerry Kopcsay & Jose Moreira: System & 
machine configuration
Derek Lieber & Martin Ohmacht: Refined 
memory settings
Everyone else: System software & 
Machine time!
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